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The lack of adequate actuators has often been cited as the limiting factor in practical
applications of smart structures. C-blocks are a building block actuation architecture that
addresses the stroke limitations of stack architectures and the force limitations of bender
architectures. Because these actuators are based upon piezoelectric materials, they are well
suited for high bandwidth dynamic applications. This paper presents an investigation of the
dynamic behavior of a generic C-block array architecture using analytical models derived
from a unique transfer matrix method and experiments using four distinctly di!erent types of
prototypes. To gain insight into the dynamic behavior of the actuation architecture,
a parameter analysis based upon both the models and experiments is given. The behavior of
long series is found to display both bending and extensional type of behaviors, which can be
well approximated with an appropriate equivalent straight bender model. For shorter series,
the performance is more complex and the full analytical model is required. From the
analytical models derived in this paper along with the insight gained from the straight
bender and parameter analysis, it is possible to design and predict the dynamic performance
of a generic C-block actuator for a given application which requires a midrange piezoelectric
actuator. ( 2001 Academic Press
1. INTRODUCTION

When selecting an actuator, an engineer has the option of using conventional methods such
as electromechanical or hydraulic actuators or smart material actuators such as
piezoelectric or shape memory alloys. Smart materials have 100}1000 times more energy
change and 10 times more energy per mass than conventional actuator technologies, such as
electromagnetic, hydraulic, and pneumatic [1]. This makes them well suited for
applications where the available actuation space and allowable mass severely constrains the
amount of useful work the actuator can deliver to the application. Of the smart materials
available, piezoelectrics are widely utilized when speed is an issue, normally where
frequencies above 5 Hz are required [2]. Unfortunately, one obstacle to piezoelectric
actuators is the small strain produced. To be useful, some form of ampli"cation is required,
which is usually provided by external leveraging [3}6], frequency leveraging [7, 8], or
internally leveraging schemes [9}11].
0022-460X/01/220317#30 $35.00/0 ( 2001 Academic Press



Figure 1. C-block construction. An individual C-block is constructed from multiple piezoelectric layers,
electrodes, and substrates bonded together. The piezoelectrically induced strain produces a bending moment that
makes the C-block #ex.
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A new class of piezoelectric actuators, C-blocks, is based upon an internally leveraged
building-block ampli"cation scheme. An individual building block is a C-shaped,
multilayered piezoelectric bender that #exes when a voltage is applied across the thickness
(Figure 1). The #exing occurs because the active piezoelectric layers are poled in the radial
direction and laid up with inert layers to create a bending moment about the neutral axis
when energized.

Prior research of individual C-blocks has demonstrated that C-blocks can generate 2)67
times the force of a straight bender with 40)5% of the de#ection [12], thus overcoming the
force limitations of benders. The de#ection is two orders of magnitude greater than that of
stack or externally leveraged architectures, which typically provide ampli"cations of only
5}25 times the bulk material strain [13]. C-blocks generate 8% more work than a straight
bender constructed from the same volume of piezoelectric material [14]. This is signi"cant
considering that the straight bender is very e$cient when compared to other internally
leveraged architectures such as Rainbows, Crescent and Thunders [15].

The main advantage to the C-block architecture is their ability to construct distributed
actuation arrays consisting of numerous individual C-blocks to further improve both the
force and de#ection (Figure 2) [14]. Since this is a direct extension of the architecture,
C-blocks do not experience the transmission losses that can plague frequency and externally
leveraged architectures by as much as a factor of three to "ve [13]. The series and parallel
array con"guration parameters give engineers two more design freedoms in addition to the
geometric and material parameters that are available in other architectures. This provides
a large number of feasible discrete C-block array architectures making it possible to design
the actuator performance directly to the application for optimal sti!ness, force, de#ection
and bandwidth. Thus, even though the C-block uses the d

31
mode of the material that is

ine$cient for high force applications, it can be directly tailored to the application with
minimal transmission losses; thereby, providing one of the highest work/mass e$ciency in
the midrange performance region [14]. This region is very useful for applications such as
shape control of wings [16] and antennas [17], or vibration control of automotive
suspensions [18, 19], engine mounts [20], helicopter rotor blades [4, 10, 21], and machine
tools [22, 23].

The quasi-static performance of both individual and array C-block architectures has been
studied in depth [12, 14]. However, the true value of any piezoelectric actuator is its
dynamic performance. The dynamic performance of an individual C-block has been



Figure 2. C-block actuator architecture con"gurations. (a) An individual C-block ampli"es the strain of the
bulk material. (b) A parallel con"guration linearly increases the force with no loss in de#ection. (c) A series
con"guration linearly increases the de#ection with no loss in force. (d) An array con"guration linearly increases
both the force and de#ection.
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modelled [24]. Unfortunately, the modelling of a distributed array architecture, fabricated
from a number of individual C-blocks, can be quite complex and is not a simple extension of
the individual building block. In this paper, a unique modelling strategy based upon
a transfer matrix method is utilized to derive an analytical model for the
frequency}amplitude response of a generic C-block actuation array. This model was
con"rmed to be accurate through experiments using four distinctly di!erent prototypes.
The transfer matrix model is very useful for small number arrays, but is cumbersome for
larger arrays. Thus, a simpler model based upon an equivalent straight beam is presented
for longer series where it accurately captures the dynamic performance. The paper
concludes with a parameter analysis based upon the models and experiments to investigate
the sensitivity of the dynamic performance to changes in the actuation architecture.

2. C-BLOCK ARRAY ANALYTICAL PERFORMANCE MODELLING

The dynamic frequency}amplitude model for the C-block array was determined
analytically using a three-step approach: (1) the equations of motion and boundary
conditions for all individual C-blocks within the array were derived using Hamilton's
principle. (2) From the equations of motion and boundary conditions, the exact transfer
matrix for an individual C-block was formulated and multiplied together with a co-ordinate
transformation matrix to determine the transfer matrix for an array C-block. (3) Using the
transfer matrix method, the natural frequencies and the displacement amplitude of the
C-block array were generated.

During the derivation, the C-block is assumed to be a cantilevered system with
m C-blocks in parallel, and n in series, each identical, with a constant radius and total
angular span of n radians. Each C-block is a thin cross-section with q layers. Thus, the
electric "eld, E

3
, within the piezoelectric material is equal to the voltage divided by the

thickness of the material, E
3
"</(z

j
!z

j~1
) and the e!ects of transverse shear and

rotatory inertia are assumed negligible. Further nomenclature is shown in Figure 3, where



Figure 3. Geometric notation for a generic array of C-blocks. A generic array of C-blocks contains m sets of
C-blocks in parallel and n sets of C-blocks in series. Each individual C-block has identical geometric and material
parameters, and a tip mass and applied force are distributed evenly among the parallel elements.
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u and w are the circumferential and radial de#ections, respectively, h is an angular
co-ordinate, R

n
is the neutral axis radius, b is a layer width, r is the distance from the

C-block center to the outside of a layer, z is the distance from the neutral axis to the outside
of a layer (z"r!R

n
), and o is the mass per unit length. The internal damping within the

C-block is modelled as structural damping, with an equivalent viscous damping coe$cient,
c/X, inversely proportional to the forcing frequency [25].

2.1. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The "rst step in developing the frequency}amplitude model is the derivation of the
equations of motion. Hamilton's principle,

P
tÈ

t
1

(d¹!d;#d=) dt"0, (1)

was employed in a form similar to that used for non-piezoelectric laminated curved beams
[26] with piezoelectric terms included in the constitutive equation [27].
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The strain energy, ;, is derived from the internal stress and strain,
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where u
kl

is the circumferential displacement and w
kl

is the radial displacement of the kth
C-block in series and the lth C-block in parallel, M is the internal moment, N is the internal
normal force, and the subscript ,h refers to di!erentiation with respect to the circumferential
co-ordinate. The kinetic energy, ¹, is the sum of the kinetic energy from each cross-section
in the C-block,
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where o is the mass per unit length of the C-block and the subscript ,t refers to
di!erentiation with respect to time. The non-conservative forces,=, are modelled as viscous
damping,
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where c is the non-dimensional damping coe$cient and X is the forcing frequency. This
work term is the time derivative of the strain energy term (equation (2)) with a multiple of
c/X.

The moment, M, and normal force, N, are associated with individual C-blocks, and are
the same here as in the individual C-block derivation [24],
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where the extensional sti!ness, A, and bending sti!ness, D, are de"ned as
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the piezoelectric normal force, NP, and piezoelectric moment, MP, are de"ned as
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and the relationships among the circumferential de#ection, u
kl
, radial de#ection, w

kl
, strain,

e0, and curvature change, i are
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In these equations,> is the Young's modulus of the material, z is the distance to the neutral
axis, b is the width, and d

31
E
3

is the internally induced piezoelectric strain.
The variations of the strain energy (equation (2)), kinetic energy (equation (3)), and work

terms (equation (4)) are added together to produce an expression for Hamilton's principle
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for an array of n C-blocks in series and m in parallel,
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(9)

Equation (9) is similar in form to Hamilton's principle for an individual C-block [24], but it
contains summations over n and m, thus producing a large number of equations of motion
which all must be solved simultaneously.

2.1.1. Equations of motion

Hamilton's principle (equation (9)) is manipulated to determine the equations of
motion and the associated boundary conditions for the C-block. The resulting equations
are m identical sets of equations of motion and boundary conditions, and,
by inspection, the solutions to these sets of di!erential equations will be identical.
Thus, only one set of equations, representing a series of C-blocks, need be solved to
determine the "nal behavior of the entire array. Therefore, the summation over l is dropped
from equation (9), and the solution is performed on only one set of equations representing
a serial C-block.

For the serial C-block, there are n sets of equations of motion, one set for each C-block
within the series. Since du

k
and dw

k
are arbitrary, the terms multiplying them must

be zero, and form the equations of motion. These equations of motion are simpli"ed
by substituting the de"nitions of the moment and normal force (equation (5)), the
relations between the displacement and the extensional strain and curvature change
(equation (8)):
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where the non-dimensional sti!ness parameter, s, is the ratio of the bending sti!ness to the
extensional sti!ness, and is de"ned as

s"D/ (AR2
n
). (11)
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Therefore, each C-block in the entire array has identical equations of motion, and these
equations of motion are identical to the equations of motion for an individual C-block [24].

2.1.2. Boundary conditions

The boundary conditions are determined from Hamilton's principle by separating the
terms outside of the spatial integral with respect to the variance each term multiplies. At the
base (h"0) of the "rst C-block, the displacements, u and w, and the slope, u, are zero,
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The slope, u, is used rather than the "rst derivative of the radial displacement, w
,h, to

simplify later calculations. At the tip of the last C-block (h"n), the moment, M, shear, <,
and normal force, N, are all zero:
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Additionally, at the (n!1) boundaries between adjacent C-blocks, all physical quantities
must match:
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The n sets of equations of motion (10) and 6n boundary conditions (equations (12)}(14))
completely describe the behavior of the serial C-block.

2.2. TRANSFER MATRIX METHOD

As the number of C-blocks in the series increases, the number of equations of motion and
boundary conditions also increase. If the equations of motion are solved simultaneously,
the complexity of the solution procedure becomes formidable as the number of C-blocks in
the series increases. Fortunately, there is an alternative solution method: the transfer matrix
method. The transfer matrix method is a powerful tool for dynamic and static analysis,
particularly for structures constructed from a series of elements linked together end to end
[28]. The power of the method lies in the fact that, unlike the "nite element method,
the order of the matrix does not increase as the number of elements in the structure
increases [29].

The methods utilized in applying transfer matrix theory are described in detail in
reference [28]. The heart of the transfer matrix method is the idea that, for any element,
a transfer matrix can be developed from the equations of motion that describe the
relationship among the state variables (displacements, slopes, moment, and forces) at each
end of the element. Thus, the individual C-block transfer matrix, [;

i
], satis"es the relation

MzNDn"[;
i
] MzND

0
, (15)
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where the boundaries of the C-block are at h"0 and n, and the state variable vector MzN, is
de"ned using the quantities from the boundary conditions (equations (12)}(14)),

MzN"Mu !w u M < NNT. (16)

The state variables u and w are tangential and radial displacements, respectively, u is the
slope, M is the moment, < is the shear, and N is the normal force.

2.2.1. ¹ransfer matrix for individual C-blocks

The form of the transfer matrix for an individual C-block is determined from the
equations of motion. First, the circumferential and radial displacements u and w that solve
the associated eigenvalue problem are written as an in"nite series of independent solutions
of the form
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where the constants C
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and K
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de"ne the radial and circumferential modeshapes and u
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the ith natural frequency.
The characteristic equation associated with the equations of motion (10) is
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where the non-dimensional frequency, j
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The values of K
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in the modeshapes (17) that relate the circumferential solution to the radial
solution are determined as a function of r

in
by inserting the solutions (17) back into the

equations of motion (10). The state variables (equation (16)) are found by using the
modeshapes (17),
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To determine the transfer matrix for an individual C-block, the equations of motion are
used to derive expressions for each of the state variables. The transfer matrix for a system
is [28]

[;
i
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] Dn [B

i
]~1 D

0
, (21)

where for the C-block, [B
i
] is the matrix of solutions de"ned in equation (20).



C-BLOCK ACTUATION 325
2.2.2. Derivation of transfer matrix for a serial C-block

The serial C-block is constructed from a series of identical C-blocks, having the same
transfer matrix, joined at their boundaries. Because of the alternate orientation of the
C-blocks, state variables between adjacent C-blocks are not automatically matched, as seen
in the boundary conditions of equation (14). Thus, in addition to the transfer matrix for an
individual C-block, a co-ordinate transformation matrix [¸], must be derived to satisfy the
boundary conditions between adjacent C-blocks (equation (14)). Between the kth and
(k#1)th C-block, this relation is

Mz
i
N
k`1

D
0
"[¸] Mz

i
N
k
Dn . (22)

An inspection of the boundary conditions of equation (14) shows that, at the boundary
between adjacent C-blocks, the circumferential displacement and normal force are in the
same direction, while the radial displacement, slope, moment, and shear alter their direction
due to the change in local coordinates. Thus

[¸]"C
1 0 0 0 0 0
0 !1 0 0 0 0
0 0 !1 0 0 0
0 0 0 !1 0 0
0 0 0 0 !1 0
0 0 0 0 0 1D . (23)

Since the serial C-block actuator is comprised of n individual C-blocks that are connected at
their boundaries, the transfer matrix equation for the serial C-block is n C-block transfer
matrices (equation (21)) combined with (n!1) co-ordinate transformation matrices
(equation (23)):
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The boundary conditions of the serial C-block (equations (12) and (13)) require the state
variables at the boundaries to be
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The real power of the transfer matrix method is in the simpli"cation of the system of
equations needed to develop the model for the behavior of the C-block. For a series of
n C-blocks, Hamilton's method produced n sets of equations of motion (equation (10)) and
a set of 6n total boundary conditions (equations (12)}(14)). All of this information, however,
was collapsed into a 6]6 matrix equation (24) with two vector boundary conditions (25)
using the transfer matrix method. Since the matrix equation consists of a multiplication of
repeated basic elements, the di$culty of obtaining a solution with increasing n, rather than
increasing geometrically, remains unchanged. This advantage of the transfer matrix method
is exploited to determine the dynamic behavior of the generic serial C-block.

2.3. DYNAMIC FREQUENCY}AMPLITUDE MODEL DERIVATION

The application of the transfer matrices to the dynamic frequency}amplitude model
derivation is divided into two parts. Initially, the transfer matrices are formed into an
eigenvalue problem to "nd the undamped natural frequencies and associated modeshapes.
These undamped frequencies and modeshapes, along with the original equations of motion,



Figure 4. Non-dimensional natural frequencies for serial C-blocks. The "rst six non-dimensional natural
frequencies, j2
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/D, for a serial C-block, and the bending and extensional frequencies of a dynamically
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frequency; **, equivalent bending natural frequency; } } } } } , equivalent extensional natural frequency.
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are then used in a modal analysis procedure to determine the damped amplitude response at
any forcing frequency.

2.3.1. Natural frequencies

The natural frequencies are obtained by examining the serial transfer matrix (24).
For the equality of equation (24) to hold, the lower right quadrant of the serial transfer
matrix [;

i
]
n
, must be singular. The values of the non-dimensional natural frequency, j

i
,

that satisfy this singularity condition are the non-dimensional natural frequencies
of the C-block series. These values are given in Figure 4 for series of C-blocks ranging
from 1 to 100. This "gure shows that, as the number of C-blocks in series increases,
the natural frequencies monotonically decrease. It is interesting to note that, for lower
modes and higher numbers in series (above 10), the natural frequency locations approach
and straight lines on the log}log graph of Figure 4. These straight lines represent the natural
frequencies of an equivalent straight bender, with bending natural frequencies being
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represented by solid lines and extensional natural frequencies being represented by dashed
lines. The equivalent straight bender is discussed in more detail in section 2.4.

2.3.2. Serial C-block mode shapes

The transfer matrix procedure can also be used to determine the mode shapes associated
with each natural frequency by eliminating one of the dependent equations from the
singular transfer matrix (24). Since the mode shapes have no absolute magnitude, any one of
the non-zero boundary state variables can be set to an arbitrary value, resulting in an
inhomogeneous 5]5 matrix equation. In this case it is convenient to set the series radial tip
de#ection to one, i.e., w

n
Dn"1, since, because of the construction of serial C-block, this

de#ection is guaranteed not to be zero. This condition is substituted into equation (24),
which is reduced, rearranged, and solved to determine the remainder of the state variables.
Thus, the relative sizes of all boundary state variables are known.

To "nd the complete modeshape, the values of the de#ection state variables, u and w,
must be known at all points. Since the boundary state vector Mz
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is known, the state
variables at the endpoints of the kth C-block are calculated from the equation
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The state variables at any point in the kth C-block in the series is determined as [28]
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where [B
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] is given in equation (20).

Combining equations (26) and (27) gives the state variables at any point in the kth
C-block in the series as
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Thus, since the displacements u and !w are the "rst two state variables, the mode-
shapes for the kth C-block actuator are the "rst two rows of equation (28), with the
second row being negative. The modeshape for the entire serial C-block array is
the piecewise sum of each of the n individual modeshapes (equation (28)) that are de"ned
over the kth C-block.

2.3.3. Modal analysis

To derive the full dynamic model for the C-block, the mode shapes and natural
frequencies are used in a modal analysis technique to determine the response of the C-block
due to the internal piezoelectric forcing functions. These forcing functions are assumed to be
sinusoidal in time with a forcing frequency of X.

To calculate the frequency}amplitude relationship, the forced displacements are assumed
to be the sum of a series of orthogonal, homogeneous solutions, u
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A convenient set of homogeneous solutions is the mode shapes associated with each
undamped natural frequency (equation (28)), and a convenient particular solution is the
static solution. The full form of the static solution is calculated in much the same way as the
dynamic mode shapes, but using a simpli"ed static transfer matrix where dynamic terms are
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eliminated. The static solution mode shape resulting from an internal piezoelectric moment
forcing is
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It is interesting to note that the reorientation of the local co-ordinate system that requires
the inclusion of the co-ordinate transformation matrix [¸], (equation (23)) also alters the
sign of some terms of equation (30), as seen by the inclusion of the (!1)k factor.

When the solution (29) is substituted into the n sets of equations of motion (10), the
boundary conditions are homogenized and each set of equations of motions are simpli"ed
to
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(31)

This set of second order ordinary di!erential equations holds for each of the n C-blocks in
the series. When all n sets of equations of motion (31) are added together, the sum is
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This form is used to simplify the equations and determine the "nal dynamic model.

2.3.4. Solution to equations of motion

The only unknown quantity in these equations (31) and (32) is the form of the time
function, a

i
(t) multiplying each modeshape, which is independent of the C-block index, k.

To determine the time function a
i
(t), the orthogonality relation involving the modeshapes is

exploited, setting all terms but one in the summation to zero, resulting in
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Equation (33) is a forced, second order ordinary di!erential equation. Although the
transient response can be calculated, the steady state response is of most interest in this
derivation, so only the particular solution for the governing di!erential equation (33) is
required. The particular solution to equation (33) is
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2.3.5. Frequency}amplitude model

For actuation purposes, the C-block is connected to the rest of the system at its tip (k"n,
h"n). For this case, the magnitude of the resulting frequency}amplitude model in the
radial direction is
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and, in the circumferential direction,
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These two equations represent the behavior of the tip of a serial C-block. In addition,
because of the identical equations of motion, these equations represent the behavior of any
series within an array structure, and, by extension, the motion of the entire array.

The values of the longitudinal orthogonality constants,=
i
, and transverse orthogonality

constants,;
i
, are calculated by solving the equations above, and are given in Figures 5 and

6 for series of C-blocks ranging from 1 to 100. These "gures show that some of the
orthogonality constants tend to approach the straight lines on the graph; this behavior is
most apparent for the transverse constants (Figure 6) of larger magnitude. The straight lines
represent the orthogonality constants of an equivalent straight bender, which is discussed in
more detail in the following section.

2.4. DYNAMICALLY EQUIVALENT STRAIGHT BENDER

The dynamic behavior of large numbers of C-blocks in series show some interesting
trends. As the number of C-blocks is increased, the behavior of the serial C-block
approaches the behavior of a dynamically equivalent straight bender. The dynamic
behavior of a straight bender is much easier to calculate; thus, this approximation is very



Figure 5. Longitudinal orthogonality constants for serial C-blocks. The longitudinal orthogonality constants,
=

i
, are given for a serial C-block and a dynamically equivalent straight bender as a function of number of C-blocks

in series, n: f, serial C-block W; ***, equivalent straight rod.
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useful for designing long series of C-blocks. The straight bender has overall macroscopic
parameters such that its transverse, beam-like properties and longitudinal, rod-like
properties are the same as the serial C-block; i.e., the length, mass, longitudinal sti!ness, and
rotational sti!ness match.

In this section, the behavior of a dynamically equivalent straight bender is determined.
The macroscopic parameters of the straight bender are calculated as a function of the
C-block parameters. The natural frequencies and orthogonality constants of the straight
bender are then calculated using standard methods, and these values are calculated as
a function of the parameters of the C-block array. The natural frequencies and
orthogonality constants of the C-block and the equivalent straight bender are compared,
and the accuracy of this comparison is discussed.

2.4.1. Equivalent parameters

The length of the dynamically equivalent straight bender must match that of the serial
C-block. This is accomplished by requiring that

¸
eq
"2nR

n
. (38)



Figure 6. Transverse orthogonality constants for serial C-blocks. The circumferential orthogonality constants,
;
i
, are given for a serial C-block and a dynamically equivalent straight bender as a function of number of C-blocks

in series, n: f, serial C-block U; **, equivalent straight bender.
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The total mass of the serial C-block is onnR
n
. The total mass of the equivalent straight

bender is o
eq
¸
eq
. Equating the two masses and using the length de"nition (38) requires that

the mass per unit length of the equivalent straight bender, o
eq
, be

o
eq
"

n
2

o. (39)

The sti!nesses of the serial C-block are calculated using Castigliano's theorem. Equating
the sti!nesses of the serial C-block and the straight bender and substituting the length of the
dynamically equivalent straight bender (38) results in an expression for the equivalent
extensional sti!ness, A

eq
, of

A
eq
"4D/ (nR2

n
) (40)

and an expression for the equivalent bending sti!ness, D
eq

, of

D
eq
"2D/n. (41)

Using these expressions for length, mass per length, and sti!ness, the bending and
extensional motion of the dynamically equivalent straight bender are calculated using



TABLE 1

Natural frequencies and orthogonality constants of a straight beam and a straight rod. ¹he
bending and extensional non-dimensional natural frequencies and orthogonality constants for

an equivalent straight beam are given with no tip mass

Mode Param. 1 2 3 4 5 6

Bending j
beq

3)516 22)024 61)68 120)89 199)65 298)6
;
eq

3)574 !0)5707 0)2029 !0)1040 0)06092 !0)0412
Extension j

eeq
1)571 4)712 7)853

=
eq

1)6211 0)1801 0)06434
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standard methods [25]. From this analysis, the non-dimensional natural frequencies, j
beq

and j
eeq

, and orthogonality constants,;
eq

and=
eq
, for the bending and extensional motions

of the equivalent straight bender are determined. Values for these parameters are given in
Table 1.

The non-dimensional natural frequencies for the equivalent straight bender, j
beq

and j
eeq

,
cannot be used directly in the dynamic C-block model (equations (32) and (33)) in place of
the non-dimensional C-block frequency, j

i
, because the C-block frequency (equation (15))

has a di!erent relationship to u
i
. The equivalent straight bender frequencies, j

beq
and j

eeq
,

depend on the length (38) and sti!ness (40) of the dynamically equivalent straight bender
rather than the C-block radius, R

n
, and sti!ness, D. Thus, an equivalent approximate

frequency, j
eq
, is de"ned as a function of j

beq
and j

eeq
. The bending natural frequencies of the

equivalent straight beam are

j
eq
"j

beq
/ (2n2n), (42)

where values for j
beq

are given in Table 1. Likewise, the extensional natural frequencies of
the equivalent straight beam are

j
eq
"J2j

eeq
/(nn), (43)

where values for j
eeq

and corresponding orthogonality constants are given in Table 1. The
bending natural frequencies (equation (42)) are used along with the bending orthogonality
constant,;

eq
, in the transverse C-block model (equation (37)), while the extensional natural

frequencies (equation (43)) are used along with the extensional orthogonality constant,=
eq

in the longitudinal C-block model (equation (36)).

2.4.2. Discussion of equivalent straight bender

The non-dimensional natural frequencies and orthogonality constants for the equivalent
straight bender are included as straight lines on the graphs of serial C-block
non-dimensional natural frequencies and orthogonality constants (Figures 4}6). Both
bending and extensional natural frequencies are included on the natural frequency graphs;
the bending and extensional orthogonality constants for each mode are included on the
appropriate charts of ;

i
and=

i
. These "gures show that, as the number of C-blocks in the

series increases, the frequencies and orthogonality constants look more and more like that
of an equivalent straight bender. Interestingly, the serial C-block reproduces both the
bending, beam-like behavior and the extensional, rod-like behavior of the equivalent
bender.
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In the natural frequency chart (Figure 4), the natural frequencies of the C-block are
somewhat scattered at low numbers in series (less than approximately 10). However, as the
number of C-blocks in series gets larger (above 10) and the serial C-block gets longer, the
natural frequencies rapidly approach the natural frequencies of the equivalent straight
bender. This is particularly apparent above about 10 in series, where the C-block
frequencies are very close to the straight bender. It is also interesting to note that the
C-block natural frequencies match both bending and extensional natural frequencies of the
straight bender.

This asymptotic behavior is also apparent in the orthogonality constant graphs.
However, because the natural frequencies of the C-block tend to be associated with either
extension or bending, the orthogonality constants tend to coverage to the straight bender
only for modes where the motion of the C-block matches the motion of the bender. For
example, in Figure 5, the extensional orthogonality constants, =

i
, tend to approach the

extensional orthogonality constants of the equivalent straight rod, but only for those modes
that are primarily extensional. The remainder of the extensional orthogonality constants,
those corresponding to modes having primarily a bending behavior, tend to decrease as the
extensional and bending behavior of the C-block becomes more uncoupled, resulting in
a scattering of data points. In Figure 6, the bending orthogonality constants, ;

i
, tend to

approach the bending orthogonality constants of the equivalent straight beam, but only
at natural frequencies that are primarily bending. Since the lower modes of long C-blocks
are primarily bending, the asymptotic behavior is more pronounced in Figure 6 than in
Figure 5.

The alignment of the natural frequencies with the predicted extensional and bending
natural frequencies (Figure 4) gives an indication of the behavior of the C-block array. In
particular, as the number of C-blocks in series increases, the bending and extensional modes
become increasingly uncoupled. For example, for a large number of C-blocks in series (over
70), the "rst six modes calculated are all primarily bending modes. Thus, the bending
orthogonality constants in Figure 6 align closely with the predicted bending constants for
large numbers in series , while, in Figure 5, the orthogonality constants for the same modes
are nowhere near the predicted extensional orthogonality constants due to the minimal
extensional behavior of these modes. For all these "gures, as the number of C-blocks in
series increases, the straight beam approximation becomes better due to the uncoupling of
the bending and extensional modes of the serial C-block.

2.4.3. Accuracy of approximation

The "rst non-dimensional natural frequency of the C-block is quite well approximated by
the equivalent straight bender frequencies even at lower numbers in series. For example,
Table 2 gives the minimum number of C-blocks in series required for the straight bender
frequency approximation to match within 5, 1, and 0)1% are given as a function of the mode
number. For numbers in series above 10, the minimum number in series required is rounded
upwards to 12, 15, 20, 25, 30, 40, 50, 60, 80, or 100 C-blocks in series, since these were the
con"gurations speci"cally examined. For the "rst natural frequency, which is of most
interest in design, the equivalent straight bender approximation is accurate to within 5% for
only four C-blocks in series, and accurate to within 1% for only eight C-blocks in series.

Natural frequencies associated with higher modes are less accurately approximated by
the straight bender. This is due to the more complex modeshapes of the higher frequencies,
where the straight bender approximation does not match as well. However, even the "rst
four modes are approximated to within 5% by as few as 10 C-blocks in series. The
orthogonality constants are predicted less well by the straight bender due to the di!erences



TABLE 2

Accuracy of dynamically equivalent straight bender approximation for natural frequencies and
orthogonality constants. ¹he minimum number of C-block in series required for the dynamically
equivalent straight bender approximation to match the natural frequency and orthogonality
constants of the serial C-block to within accuracies of 5, 1 and 0)1% are given as a function of
the mode number. For numbers above 10, the minimum number is rounded upwards to 12, 15, 20,

25, 30, 40, 50, 60, 80, or 100 C-blocks in series

Minimum d C-blocks in series, n, required for X% accuracy
Accuracy

Quantity X% Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Natural 5 4 9 6 10 12 20
frequency 1 8 20 30 40 25 40

j
i

0)1 30 60 80 100 '100 '100

Orthogonality 5 5 30 70 '100 '100 '100
constants 1 12 30 '100 '100 '100 '100
=

i
, ;

i
0)1 40 80 '100 '100 '100 '100
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between modeshapes; however, the prediction is good for lower modes. In fact, for the "rst
natural frequency, the equivalent straight bender approximation is accurate to within 5%
for only "ve C-blocks in series, and accurate to within 1% for only 12 C-blocks in series.

The straight bender approximation is signi"cant because it demonstrates that the
complex serial array of C-blocks, having 2n equations of motion, can be accurately
modelled by a straight bender having only two equations of motion. Moreover, the more
individual C-blocks contained in the serial C-block, the more accurate the approximation.
Although this approximation breaks down for only a few C-blocks in series, necessitating
the use of the more complex exact model, the approximation is surprisingly accurate for
longer series of C-blocks. Thus, paradoxically, the more complex the exact model, the more
accurate the simple approximation.

3. EXPERIMENTAL VALIDATION

To experimentally verify the radial frequency}amplitude model (equation (36)), a number
of prototypes were fabricated and the tip amplitudes were experimentally recorded through
a range of input frequencies. The prototypes were constructed with a low number in series
so that the more complex portion of the analytical model, where the straight bender
approximation is not yet accurate, could be tested. Two di!erent piezoelectric materials
were used to fabricate these prototypes: polyvinylidene #uoride (PVdF) polymeric material
and PZT 5-H ceramic material. The fabrication procedures, test procedures and results
from two example prototypes from each material are presented below.

3.1. PROTOTYPE FABRICATION

Prototypes from each material were fabricated using o!-the-shelf materials and
bench-top techniques. The two materials used had widely di!erent sti!ness and
piezoelectric properties (Figure 7), allowing the model to be veri"ed across a wide
non-dimensional space. The ceramic PZT material was chosen because ceramics are used in



Figure 7. Unimorph C-block cross-section. The unimorph C-block cross-section consists of a piezoelectric layer
bonded to a substrate. Additional layers include electrode layers and coating layers. The subscripts p, s, b, e, and
c refer to the piezoelectric, substrate, bonding, electrode, and coating layers, respectively: , piezoelectric layers,
PZT-5H (>"63 GPa) or PVdF (>"5)4 GPa); , epoxy layer (>"1)90 GPa); , Electrode non-existant
or silver paste (>"0)70 GPa); , substrate, steel (>"194 GPa) or aluminum (>"65 GPa); , coating:
non-existant or polymer (>"1)00 GPa); C poling direction.
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smart structures applications requiring high-energy density, and PZT-5H has a relatively
high piezoelectric constant, d

31
, and thus could be run to higher displacements with lower

input voltage. The PVdF polymeric material was chosen because it presents a substantial
contrast in material properties when compared to the ceramic materials. Because the
polymer is supplied in a thin "lm form, this material is also inexpensive and easy to use to
fabricate prototypes. All prototypes were constructed as unimorphs (Figure 7) to simplify
fabrication and avoid potential problems associated with matching diameters of two
di!erent piezoceramic materials.

3.1.1. PZ¹-5H ceramic prototypes

To construct the ceramic actuators, commercially available circular half-tubes of
PZT-5H with preplated electrodes were procured from Morgan Matroc Electroceramics.
The half-tubes were 10)0 mm in outside radius and 0)838 mm in thickness, with a width of
approximately 12)2 mm. The thickness of the electrode layer was only 2}5 km, which is
signi"cantly less than the other layers; therefore, this layer was neglected in calculating the
physical constants of the C-block. The piezoelectric constant of the PZT-5H was measured
in the lab by directly measuring the displacement of a sample as a function of voltage. The
resultant piezoelectric constant, 380 pm/V, was substantially higher than the published
value for this material.

To fabricate substrates to match the ceramic half-tubes, strips of 0)455 mm stainless steel
were cut to 12)2 mm in width to match the ceramic. These strips of steel were bent around
a double mandrel into a recursive S-shape as shown in Figure 8(a). The mandrel was sized
so that the outside radius of the resulting substrate was 9)16 mm, and thus conformed to the
inner diameter of the ceramic.

Once the steel was bent, the substrate was cleaned and roughened to improve the
adhesion of the epoxy. The ceramic was then epoxied to the steel with a layer of Insulcast
501 epoxy approximately 100 km thick. After the epoxy cured, lead wires were soldered in
between adjacent ceramics. In addition, a lead wire was soldered to the base of the C-block
to connect to the power supply. A completed ceramic prototype is shown in Figure 8(b). The
dimensions of these prototypes are given as prototypes 1 and 2 in Table 3.



Figure 8. Ceramic C-block prototype fabrication. Two prototypes were fabricated to test the prototype arrays.
(a) A steel substrate was bent to conform to the inner radius of ceramic semicircles. (b) Two prototypes were
constructed, one with two in series and one with four in series. These prototypes are shown with the tip mass used
for dynamic testing attached.

TABLE 3

C-block array experimental prototype geometric parameters. ¹wo prototypes were
constructed for performance testing. ¹his table gives the outer radii, widths, and thicknesses for
these prototypes. Parameters given include the radius, the width and thickness of each layer,
and the sti+ness ratio. ¹he subscripts p, e, b, s, and c represent the piezoelectric, electrode,

bonding, substrate, and coating layers respectively

Outer Thickness (km) Width (mm)
Proto No. in Piezo radius
no. series material (mm) t

p
t
c

t
e

t
b

t
s

b
p

b
c

b
e

b
b

b
s

1 2 PZT-5H 10)0 838 * * 76 455 12)2 * * 12)2 12)2
2 4 PZT-5H 10)0 838 * * 122 455 12)2 * * 12)2 12)2
3 2 PVdF 9)5 52 12 6)5 25 25 22)2 22)2 18)8 18)5 18)5
4 3 PVdF 7)8 52 12 6)5 25 25 22)2 22)2 18)8 18)5 18)5

336 A. J. MOSKALIK AND D. BREI



Figure 9. Ceramic C-block prototype fabrication. The polymeric serial C-block actuators were fabricated from
PVdF piezoelectric "lm. (a) The PVdF "lm was bonded to aluminum foil or to another layer of "lm and wrapped
around a dowel "xture. (b) After the epoxy cured, the prototypes were clamped between glass slides and connected
to electrodes to form the "nal prototype.
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3.1.2. P<dF polymeric prototypes

Polymeric prototypes were fabricated from commercially procured PVdF "lm
manufactured by AMP Incorporated. The "lm was 22)2 mm wide and 52 lm thick, and was
pre-electroded with a 6)4 km thick silver electrode which was covered with a protective
coating of 12 km thick. The "lm was epoxied to alternating 18)5 mm wide, 25 km thick
aluminium substrates using a 25 km thick layer of Insulcast 501 epoxy manufactured
by Permagile Industries. The substrate was bonded to alternating sides of the "lm to
change the sign of the bending moment in adjacent C-blocks. The bonded "lm was wrapped
around dowels in alternating directions as shown in Figure 9(a) and the epoxy was allowed
to cure. The "lm was then removed from the dowels and electrodes were attached to
form the "nal prototypes using conductive tape. A completed polymeric prototype is
shown in Figure 9(b). The dimensions of these prototypes are given as prototypes 3 and 4 in
Table 3.

3.2. TEST SET-UP AND PROCEDURE

The dynamic testing method was slightly di!erent between the ceramic and polymeric
prototypes. For all prototypes, the C-block was clamped in place and connected to
a variable frequency source, and a Philtec model A88NE1 "ber optic probe was used to



Figure 10. Frequency}amplitude experimental apparatus. The amplitude output of the C-block arrays as
a function of frequency input was measured with a "ber optic probe connected to a dynamic signal analyzer. (a)
The diagram of the test set-up shows all pieces of equipment. (b) Photograph of test set-up.

338 A. J. MOSKALIK AND D. BREI
track the position of the tip of the C-block and the phase of the displacement. For
each ceramic prototype, the input to the C-block and the output from the "ber optic
probe was connected to an HP model 35670A dynamic frequency analyzer, as shown
in Figure 10. For each polymeric prototype, the C-block connected to an HP
33120A frequency generator and the "ber optic probe was connected to an HP 54601B
oscilloscope.

To perform the experiment, an 5V input sine wave was applied to each C-block from the
dynamic signal analyzer. The frequency of this sine wave was swept from a minimum
frequency below the "rst resonant frequency to a maximum in thousands of Hertz. These
minimum and maximum frequencies varied from prototype to prototype to ensure that the
lowest natural six frequencies were captured. At intermediate frequencies, the peak
amplitude and phase of the tip displacement of the C-block was measured using the
dynamic signal analyzer.



Figure 11. Frequency}amplitude experimental results for C-block array prototype 1. These results are for
a ceramic unimorph of two C-blocks with outside radius"10)00 mm at 5 V input. The geometric parameters of
this prototype are given as prototype 1 in Table 3, and the results and errors are given in Table 4:**, theoretical
amplitude and phase; } } } } }, experimental amplitude and phase.

Figure 12. Frequency}Amplitude experimental results for C-block array prototype 2. These results are for
a ceramic unimorph of four C-blocks with outside radius"10)00 mm at 5V input. The geometric parameters of
this prototype are given as prototype 2 in Table 3, and the results and error are given in Table 4:**, theoretical
amplitude and phase; } } } } }, experimental amplitude and phase.
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3.3. TEST RESULTS

Graphs of the experimental results for all prototypes are shown in Figures 11}14 along
with the analytically predicted results. The experimentally determined locations of all
natural frequencies are given in Table 4. The damping coe$cients used in the analytical
model were determined previously for these materials [24]. In some "gures, the amplitude
of the largest peaks were trimmed to show more detail at the lower frequencies. In all
"gures, the amplitude curve starts at the static displacement amplitude at low frequencies,
and shows a series of natural frequency peaks, but with di!erent heights and spacing.
Between natural frequencies, the amplitude decreases to near zero. The material used to



Figure 13. Frequency}amplitude experimental results for C-block array prototype 3. These results are for
a ceramic unimorph of two C-blocks with outside radius"10)00 mm at 5V input. The geometric parameters of
this prototype are given as prototype 3 in Table 3, and the results and error are given in Table 4:**, theoretical
amplitude and phase; } } } } } }, experimental amplitude and phase.

Figure 14. Frequency}amplitude experimental results for C-block array prototype 4. These results are for
a ceramic unimorph of four C-blocks with outside radius"10)00 mm at 5V input. The geometric parameters of
this prototype are given as prototype 4 in Table 3, and the results and error are given in Table 4:**, theoretical
amplitude and phase; } } } } } }, experimental amplitude and phase.
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fabricate the C-blocks is underdamped, and therefore the amplitude peaks at each natural
frequency are very pronounced. In Figure 12, where over six natural frequencies can be
observed, only the "rst six are given in Table 4 to match the six derived in the model.

For all prototypes, the average di!erence between the predicted and measured de#ection
across the frequency range and the average di!erence between the analytical and
experimental natural frequencies are given in Table 4. The correlation between the analytical
model and the experimental results is very good. For the natural frequency, the average
di!erence between the predicted and measured results ranged from 3)69 to 7)96%, with
the greatest di!erence between the analytical and experimental values just over 12%. The



TABLE 4

C-block array frequency}amplitude experimental results. ¹he static de-ection amplitude, the
experimentally determined locations of the natural frequencies, and the non-dimensional values
of these frequencies are given for all prototypes. In addition, the average di+erence between the
analytical model and the experimental results are given for the tip de-ection and natural
frequency locations. ¹he percentage di+erence between the experimental value and analytical

prediction is also given

Experimental natural frequencies
Average amplitude di!.

Static fromtheory toexperiment Ave. % di!.
amp. Location Non-dim. from theory to

Proto (km) (km) Percentage
(%) Mode

(Hz) freq. experiment

1 0)86 0)306 3)02 1 322 0)1133 !3)24
2 1410 0)496 !5)71
3 2044 0)719 2)91
4 5761 2)027 4)46

2 1)44 0)745 3)21 1 94 0)0315 !6)72
2 525 0)1758 4)72
3 644 0)216 10)31
4 1412 0)473 !11)16
5 2509 0)840 12)03
6 3400 1)138 !0)22

3 10 4)14 8)72 1 16)3 0)118 0)67
2 65 0)470 !10.7
3 96 0.694 !0.69
4 260 1.88 !11.39

4 8 10.56 8.13 1 12 0.0574 1.11
2 42.5 0.203 0.20
3 107 0)512 7)36
4 168 0)804 4)75
5 281 1)345 2)98
6 525 2)512 5)75
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locations of the "rst natural frequency, which are of most interest from a design perspective,
are predicted much more accurately, to within an average of 2)93%.

For the experimentally determined amplitudes, the di!erence between the analytical
model and experimental data averaged 0)306 and 0)745 km for the ceramic prototypes, and
4)14 and 10.56 km for the polymeric prototypes. This corresponds to 3)19% of the
maximum experimental amplitudes for the ceramic prototypes and 8)42% for the polymeric
prototypes. For the polymeric prototypes, a substantial portion of this di!erence is due to
the imprecision of the "ber optic probe at the high amplitudes near the natural frequency
locations. A substantial portion of the remainder of the error, for both polymeric and
ceramic prototypes, is due to the slight inaccuracies in natural frequency location.
Additionally, near the natural frequency locations, amplitude di!erences are likely due to
inaccuracies in the damping coe$cient.

The remainder of the di!erences between the experimental data and the analytical model,
both in natural frequency location and amplitude, could easily be due to reasonable
variations in the geometry of the prototypes and the experimental apparatus. The errors are
likely due to variations in the bonding layer, additional compliance between adjacent
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C-blocks, or compliance in the clamped end of the C-block, producing an end condition
that is not perfectly "xed. Another potential source of error is associated with the higher
mode shapes. These modes are more complex, and are less accurately modelled by the
analytical solution. However, despite the small error, the analytical model correlates very
well with experimental results.

4. PARAMETER ANALYSIS AND DISCUSSION

The experimental results, coupled with the analytical analysis, show that the C-block
performance depends on two important quantities: the natural frequency locations and the
amplitude of the motion. By knowing how C-block parameters form the performance
models for these quantities, engineers can use the models to compare di!erent C-block
designs and optimize them to meet particular application requirements. In this section, the
dependence of the natural frequency locations and the amplitude of the motion on material,
geometric, and array con"guration parameters is examined by performing a parameter
analysis of the analytical model. To simplify the analysis, the cross-section was assumed to
consist of two layers of active material of thickness a. This represents the most energy-dense
and e$cient construction of the C-block actuator, and allows the e!ect of the altering of the
geometric and material parameters contained within the internal moment, MP, and the
bending sti!ness, D, to be explicitly examined.

4.1. NATURAL FREQUENCY

For the "rst natural frequency of the C-block, the frequency location is closely
approximated by the frequency of the equivalent straight beam. Using the relation between
the C-block and the straight beam and the de"nition of the C-block natural frequency
(equation (19)), the "rst natural frequency of the C-block is
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where this expression has been simpli"ed by assuming a cross-section of thickness 2a. This
equation demonstrates that increasing the sti!ness, >, or thickness, a, of the C-block, or
decreasing its density, o

v
, or radius, R

n
, will increase the natural frequency. As expected,

these conclusions match those from the investigation of the individual C-block, a more
thorough discussion of which is contained in reference [24]. Unlike the individual C-blocks,
the values of the natural frequencies also depend on the number of C-blocks in the series, n.
Figure 4 shows that as the number of C-blocks is increased, the natural frequencies drop
approximately proportional to n2 for bending frequencies and proportional to n for
extensional frequencies. The "rst natural frequency is primarily a bending frequency, and
thus equation (44) shows the n2 proportionality. As the number in series grows, and the
equivalent straight bender approximation becomes more accurate, the n2 and
n proportionalities more accurately re#ect the dependency of the dynamic model.

The comparison of experimental results from di!erent actuators clearly shows the e!ect
of the number in series on the natural frequencies. For example, Figure 15 shows
the non-dimensional experimental frequency}amplitude response, j

i
, for three ceramic

C-block actuators: an individual C-block [24], two in series, and four in series. The output
de#ection has been normalized to one at static displacements and the frequency has been
non-dimensionalized using equation (19). Figure 15 shows that as the number in series



Figure 15. Comparison of C-block actuator dynamic frequency}amplitude response. The experimentally
determined non-dimensional frequency}amplitude response of three C-block actuators (individual, two in series,
and four in series) is shown. The original data are given in Figures 13 and 14 of this paper and in Figure 7 of
reference [24]. The output strain is normalized with respect to the moment e!ectiveness:**, individual C-block;
}} } }} }, series of two C-blocks; - - - - -, series of four C-blocks.
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increases, the natural frequency locations drop. For example, the "rst non-dimensional
natural frequency, j

1
, of the individual C-block occurs at 0)426, while the "rst

non-dimensional natural frequency of the series of two drops to 0)1269, and the "rst
non-dimensional natural frequency of the series of four is the small peak at only 0)0298.
Thus, larger arrays of C-blocks have correspondingly lower natural frequencies.

4.2. AMPLITUDE

In addition to the frequency, the amplitude of the C-block de#ection (equation (36))
is dependent on the group of terms multiplying the frequency}amplitude model, and on
the orthogonality constants contained within the square root. The multiplicative group of
terms is
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where this expression has been simpli"ed by assuming a cross-section of thickness 2a. This
collection of terms scales the output amplitude at all frequencies. This equation, and an
examination of the experimental results, demonstrates that increasing the electric "eld, E

3
,

the piezoelectric constant, d
31

, or the radius, R
n
, or decreasing the thickness, a, of the

C-block increases the output de#ection. In addition to the parameters shown in equation
(45), the de#ection is dependent on the orthogonality constants. As shown in Figures 5 and
6, these constants tend to scale linearly with n. Thus, in general, the displacement of the
C-block tip increases linearly with the number in series.

However, experimental results show that, in particular circumstances, the dependency of
the de#ection on n is more complex. For example, it is particularly interesting to compare
the frequency}amplitude plots seen in Figure 15 from di!erent actuators to demonstrate
the e!ect of these constants. In the experimental results, the normalized displacement
output at the "rst peak decreases as the number of C-blocks in series increases. With four in
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series, the amplitude of the "rst peak is already relatively small, as seen in Figure 12. This is
particularly interesting because, even with a small damping ratio, the strain amplitude
around the "rst natural frequency is smoothed out, dropping only slightly below
the static displacement amplitude. The small amount of damping e!ectively eliminates
the dip to zero strain amplitude exhibited by the individual C-block. The explanation
for this behavior is that, as the number of C-blocks in series grows, the "rst
natural frequency becomes primarily a transverse mode, where the longitudinal
orthogonality constant decreases and the transverse orthogonality constant increases.
Thus, for the longitudinal mode measured, the amplitude peak at the "rst natural frequency
is smaller than the second peak. This is signi"cant because it shows that, as the
C-block arrays get longer, the importance of the "rst natural frequency in longitudinal
motion decreases. This means that, for long C-blocks, the actuator could be used
for applications having a frequency range beyond the lower natural frequencies
of the C-block without producing wide-amplitude deviations across the frequency
spectrum.

5. CONCLUSION

This paper presented the investigation of the dynamic behavior of a generic C-block
array architecture. A Hamiltonian energy method was utilized to derive an analytical
frequency amplitude model for a generic C-block actuator. The transfer matrix method was
used to reduce the model of a generic C-block actuator to a 6]6 matrix equation with two
vector boundary conditions. Even though the derivation was complex, the "nal model is
simple to use and depends only on parameters that can be measured or determined from the
graphs in Figures 4}6. Through experimental validation with four distinctly di!erent
prototypes, this model was found to predict the "rst natural frequency to within an average
of 2)93% and the amplitudes to within 3)19% for the ceramic prototypes and 8)42% for the
polymeric prototypes.

From the model, it can be observed that as the number of C-blocks in series increases, the
actuator reproduces both bending beam behavior and extensional rod behavior of an
equivalent straight bender. A dynamically equivalent straight bender model was derived
that predicts the natural frequency of the fourth mode to within 5% and the second mode to
within 1% for more than 10 C-blocks in series. However, if the C-blocks are below 10 in
series then the transfer matrix method should be employed.

From the parameter analysis based upon the models and experiments, it was determined
that the natural frequencies of a C- block array can be increased by increasing C-block
sti!ness (square root e!ect), increasing thickness (linear e!ect), decreasing the radius
(quadratic e!ect), decreasing the mass (square root e!ect), and decreasing the number in
series (quadratic e!ect).

The amplitude can be increased by increasing the C-block radius (quadratic e!ect),
increasing the number in series (linear e!ect), and decreasing the thickness (linear
e!ect).

To simultaneously maximize both the bandwidth and amplitude, the engineer should
strive to maximize the strain and Young's modulus and minimize the density. The number
in series should also be minimized, although the importance of lower frequencies decreases
as the number in series increases. This indicates that it may be possible to use any number of
C-blocks in series for practical applications.

Thus, with the simple analytical models derived in this paper along with the insight
gained from the straight bender and parameter analysis, it is possible to design and predict
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the dynamic performance of a generic C-block actuator for a given application which
requires a midrange piezoelectric actuator.
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